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ABSTRACT 

The problem was to apply Poisson regression and its variants to modeling doctor visits. The set of 

explanatory variables under consideration was tested and subsequently the final model was 

determined. The MLE. Was used was for estimation using the Stata software package. The 

research resulted in selecting the count model variant with the best estimates using information 

criteria. In addition, where there was overdispersion, Negative binomial regression gave better 

estimates then Poisson model. 
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INTRODUCTION 

1.1     BACKGROUND OF STUDY 

A visit to doctor, also known as physician office visit or ward round is a meeting between a patient 

with a physician to get health advice of treatment for a symptom or condition. According to a 

survey in the in the United States a physician typically sees between fifty and one hundred patients 

per week, but the rate of visitation may vary with medical specialty, but differs one little by 

community size.  The four great cornerstone of diagnostic medicine are anatomy (structure what 

is there), physiology (how the structure work) pathology (what goes wrong with anatomy and 

physiology) and psychology (mind and behavior), the physician should consider the patient in their 

“well” context rather than simply as a walking medical condition. This means the socio-political 

context of the patient (family, work, stress, beliefs) should be assessed as it often offers vital clues 

to the patient’s condition and further management. The attempt to solve physical problems led 

gradually to a statistical data type. In the analysis of data it is necessary to first comprehend the 

type of data before deciding the modeling approach to be used in the context of modeling the 

discrete, non negative nature count of a dependent variable, the use of least square regression 

models several methodological limitations and statistical properties (Miaou, 1993; Karlaftis and 

tarko,1998; Shankar,1995). Unlike the classical linear regression models for count and counts are 

non-negative integer (0,1,2,3…) and these integers arise from counting rather than ranking. Count 

when related to other variables would be treated as dependent variables. The Poisson regression 

model is a good starting point of count data modeling. Many examples such as visits to doctor, the 

number of patent awarded to a firm, the number of road accident death, the number of dengue 

fever cases are restricted to a single digit or integer with quite low number of events (Cameron and 
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Trivedi, 1998, Hausman et al, 1984; Radin et al, 1996). For such feature of data, Poisson regression 

has more advantages over conventional linear model (Chin and Quddus, 2003; Shankar, 1995). 

Poisson regression suffers one potential problem, this is related to the assumption of equality of 

the mean and variance a property called equidispersion. When this assumption is violated, for 

instance the variances excess the mean, an overdispersion occurs. Failure to control for 

overdispersion will lead to inconsistent estimates, biased in standard error and inflated test 

statistics. Hence in modeling count data, it is a usual practice after the development of Poisson 

regression model to proceed with analysis of correcting for overdispersion if it exists. One of the 

approaches to modeling overdispersion is to use quasi likelihood estimation techniques proposed 

by Wedderbum (1974). The analysis of data in this study focuses on the use of Poisson regression 

with application to visits to Doctor. This is because Poisson regression has more advantages over 

conventional linear model. 

Therefore, it appears worthwhile to devote effort in using Poisson regression to modeling doctor’s 

home visit among the aged in Nigeria with a view of evaluating the impact of doctors home visit 

among the aged.  

METHODOLOGY 

Having reviewed related work on count data model-Poisson regression, it is of need to gather data 

which will be utilized as a part of figuring a reasonable and practical model for this project. 

Conversely, this chapter depicts the methodology and its point of utilization. It also clarifies the 

research method and the research that should be utilized and the techniques utilized to guarantee 

the unwavering quality and legitimacy of the research. 

3.1  Count Data Model 

Count data is a statistical data type in which the observations can take only non- negative integer 

values {0,1,2, 3,...} and integers arise from counting. An individual piece of count data is often 

termed a count variable that is count variable indicates the number of times something happened. 

When count variable is treated as a random variable, the Poisson distribution is commonly used to 

represent its distribution. We have several count models bur in the project we consider Poisson 

regression model (PRM), which is one of the foundation of other count models. 

3.2  Poisson Distribution 

In Probability Theory and Statistics, the Poisson distribution is a discrete Probability distribution 

that expresses the Probability of a given number of events occurring in a fixed interval of time or 

space. If these occurs with a known constant rate and independently of the time since the last event. 

The Poisson distribution can also be used for the number of events in other specified intervals such 

as distance, area or volume. The Poisson distribution is popular for modeling the number of time 

an event occurs in an interval of time or space. Example are The Poisson distribution may be useful 

to model events such as: The number of Meteorites greater than 1 meter diameter that strike Earth 

in a year, The number of Patients arriving in an Emergency room between 10pm to 11pm, The 

number of Photons hitting in particular time interval and the number of Doctor’s visit to Patients 

per annual. 
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3.2.2  ASSUMPTIONS AND VALIDITY 

The Poisson distribution is an appropriate model if the following assumptions are true where 𝑘Is 

the number of times an event occurs in an interval and 𝑘 can take values 0,1,2,….The occurrences 

of one event do not affect the Probability that a second event will occur. That is, events occur 

independently, The average rate at which events occurs is constant, Two events cannot occur at 

exactly the same instant instead at each very small sub-interval exactly one event either occurs or 

does not occur, The actual Probability distribution is given by a binomial distribution and the 

number of trials is sufficiently bigger that the number of successes one is asking about and If these 

conditions are true then is a Poisson random variable and the distribution of 𝑘 is a Poisson 

distribution. 

3.2.3  Probability of Events For A Poisson Distribution 

An event can occur 0,1,2,3,… times in an interval. The average number of events in an interval is 

designated(lambda).  is the event rate, also called the rate parameter. The Probability of 

observing 𝐾 event in an interval is given by the equation 

𝑃(𝑘𝑒𝑣𝑒𝑛𝑡𝑠𝑖𝑛𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙) =  
𝑒−

𝑘

𝐾!
 

Where ,  is the average number of events per interval.  𝑒 is the number 2.71828 …. (Euler’s 

number) the base of the natural logarithms. 𝐾 takes the values0,1,2,3 … .. 

𝐾! =𝑘 × (𝑘 − 1) × (𝑘 − 2) × … × 2 × 1 is the factorial of 𝐾. 

This equation is the Probability mass function (PMF) for a Poisson distribution. The equation can 

be adapted if instead of the average number of events , we are given a time rate 𝑟 for the events 

to happen. Then = 𝑟𝑡 (with 𝑟 in unit 1/time), and𝑃(𝐾𝑒𝑣𝑒𝑛𝑡𝑠𝑖𝑛𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑡) =  𝑒−𝑟𝑡 (𝑟𝑡)𝑘

𝑘!
 

3.2.4  DEFINITION 

A discrete random variable x is said to have a Poisson distribution with parameter > 0, if for 𝑘 =
0,1,2, …, the Probability mass function of x is given by 

𝐹(𝑘; ) = Pr(X = x) =


ke−

k!
, 

The positive real number  is equal to the expected value of x and also to us variance. 

 = 𝐸(𝑥) = 𝑉𝑎𝑟(𝑥). 

The Poisson distribution can be applied to systems with large number of possible events, each of 

which is rare. How many such events will occur during a fixed time interval? Under the right 

circumstances, this is a random number with a Poisson distribution. The conventional definition 
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of Poisson distribution contains two terms that can easily overflow on Computers  
𝑘
 to 𝑘! can 

also produce a rounding error that is very large compared to  𝑒−  and therefore give an erroneous 

result. For numerical stability the Poisson Probability Mass Function should therefore be evaluated 

as : 𝐹(𝑘; ) = exp {k ln  −  − lnГ(k + 1)}  which is Mathematically equivalent but numerically 

stable. The natural logarithm of the Gamma Function can be obtained. 

3.3  POISSON REGRESSION 

Poisson regression is a generalized linear model (GLM is a flexible generalization of ordinary 

linear regression that allows response variable that have error distribution models other than 

normal distribution) form of regression analysis used to model count data and contingency tables. 

Poisson regression assumes the response variable Y has a Poisson distribution and assumes the 

logarithm of its expected value can be modeled by a linear combination of unknown parameters. 

A Poisson regression model is sometimes known as a log-linear model, especially when used to 

model contingency tables. 

3.3.1  POISSON REGRESSION MODEL 

Is 𝑥 ∈ ℝ𝑛 is a vector of independent variable, then the model takes the form 

log (𝐸 (
𝑦

𝑥
)) =  𝛼 + 𝛽′𝑥 where 𝛼 ∈ ℝ and 𝛽 ∈ ℝ𝑛. Sometimes this is written more compactly as 

log (𝐸 (
𝑦

𝑥
)) =  𝜃′𝑥, where x is now an (n +1)- dimensional vector consisting of n independent 

variables concatenated to a vector of one. Here 𝜃 is simply 𝑥 concatenated to𝛽. Thus, when given 

a Poisson regression model 𝜃 and an input vector 𝑥, the predicted mean of the associated Poisson 

distribution is given by 

𝐸 (
𝑦

𝑥
) =  𝜃′𝑥. 

3.3.2 Poisson Regression Model Variables 

In Poisson regression response/outcome variable Y is a count. But we can also have 
𝑦

𝑡
,the rate (or 

incidence) as the response variable, where 𝑡 is an interval representing time, space or some other 

grouping. Explanatory variable(s),𝑋 = (𝑥1, 𝑥2, . . . . . . 𝑥𝑘) can be continuous or a combination of 

continuous and categorical variables. Convention is to call such a model “Poisson regression”. 

If 𝑦/𝑡 is the variable of interest then even with all categorical predictors, the regression model will 

be known as Poisson regression model and If  𝑌𝑖 are independent observations with corresponding 

values 𝑥𝑖  of the predictor variables, then 𝜃 can be estimated by Maximum Likelihood. The 

Maximum-likelihood estimates lack a closed-form expression and must be found by numerical 

methods. The Probability surface for Maximum-likelihood Poisson regression is always concave, 

making Newton-Raphson or other gradient based methods appropriate estimation techniques. 

3.3.3  MAXIMUM LIKELIHOOD BASED PARAMETER ESTIMATES. 
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Given a set of parameter 𝜃 and an input vector𝑥, the mean of the predicted Poisson distribution, 

as stated earlier is given  by   𝑃 (
𝑦

𝑥
; 𝜃) = (𝑦/𝑦!)𝑒− = 𝑒𝑦𝜃′𝑥𝑒𝑒−𝜃′𝑥

/𝑦! . 

Now suppose we are given a data set consisting of m vectors𝑥𝑖𝜖ℝ𝑛+1, i=1,2,…, m along with a 

set of m values 𝑦1, … . . , 𝑦𝑚 ∈ ℕ. Then, for a given set of parameter𝜃, the Probability of attaining 

this particular set of data is given by 

𝑃(𝑦1, … . , 𝑦𝑚/𝑥1, … . , 𝑥𝑚; 𝜃) = ∏ 𝑒𝑦
𝑖𝜃′𝑥𝑖 𝑒−𝑒𝜃′𝑥𝑖

/𝑦𝑖! 

𝑚

𝑖=1

 

By the method of Maximum likelihood, we wish to find the set parameters 𝜃 that makes this 

Probability as large as possible. To do this, the equation is first rewritten as a likelihood function 

in terms of 𝜃: 

𝐿 (
𝜃

𝑋, 𝑌
) = ∏ 𝑒𝑦

𝑖𝜃′𝑥𝑖 𝑒−𝑒𝜃′𝑥𝑖
/𝑦𝑖! 

𝑚

𝑖=1

 

Note that the expression on the right hand side has not actually changed. A formula in this form is 

typically difficult to work with; instead one uses the𝑙𝑜𝑔 − 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑. 

ℓ (
𝜃

𝑋, 𝑌
) = ∑(𝑦𝑖𝜃

𝑖𝑒𝜃𝑖𝑥𝑖

𝑚

𝑖=1

) . 

Notice that the parameter 𝜃only appears in the first two terms of each term in the summation. 

Therefore, given that we are only interested in finding the best value of 𝜃we may drop the 𝑦𝑖! and 

simply write 

ℓ(𝜃 𝑋, 𝑌⁄ ) =  ∑ 𝑦𝑖𝜃
′𝑥𝑖 − 𝑒𝜃′𝑥𝑖𝑚

𝑖=1 . 

To find a Maximum likelihood, we need to solve an equation 

ℓ
(𝜃 𝑋, 𝑌 )⁄

𝛿𝜃
= 0 

This has no closed-form solution. However, the negative, log-likelihood −ℓ(𝜃 𝑋, 𝑌⁄ ) is a convex 

function and so standard convex optimization techniques such as gradient descent can be applied 

to find the optimal value of𝜃. 

 

 

3.3.4 Poission Regression in Practice 

Poisson regression may be appropriate when the dependent variable is a count, for instance the 

event of doctor’s visit. The event must be independent in the sense that the arrival of one Patient 
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will not make another less or more likely but the Probability per unit time of events is understood 

to be related to covariates such as time of day. 

3.3.5 Exposure and Offset 

Poisson regression may also be appropriate for the rate of data, where the rate is a count of events 

divided by some measure of the unit’s exposure (a particular unit of observation). For example, 

biologist may count the number of tree observations, exposure would be unit area, and rate would 

be the number species per unit area. In Poisson regression that is handled as an offset, where the 

exposure variable enters on the right-hand side of the equation but with parameter estimation (for 

log (exposure)) constrained to 1. 

log ((𝐸(𝑌 𝑥⁄ )) = log(𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒) +  𝜃𝑖𝑥which implies 

log(𝐸(𝑌 𝑥⁄ )) = log(𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒) = log (
𝐸 𝑌 𝑥⁄

𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒
) =  𝜃′𝑥. 

3.3.6 OVERDISPERSION 

A characteristic of Poisson distribution is that its mean is equal to its variances. In certain 

circumstances, it will be found that the observed variances that the observed variances is the greater 

than the mean, this is known as overdispersion and indicates the model to be appropriate. A 

common reason is the omission of relevant explanatory variable or dependent observations. Under 

some circumstances, the problem of overdispersion can be solved by using quasi-likelihood 

estimation or a negative binomial distribution instead. Ver Hoef and Boveng described the 

difference between quasi-Poisson (also called overdispersion with quasi-likelihood) and negative 

binomial (equivalent to gamma-Poisson) as follows If 𝐸(𝑌) =  µThe quasi-Poisson model 

assumes 𝑣𝑎𝑟(Y) =𝜃µ while the gamma-Poisson assumes 𝑣𝑎𝑟(𝑌) =  µ(1 + 𝑘µ) is  where 𝜃  the 

quasi-Poisson over dispersion parameter, and k is the shape parameter of the negative binomial 

distribution for both models, parameters are estimated using iteratively reweighted least squares. 

For quasi-Poisson, the weights areµ/𝜃. 

3.4  NEGATIVE BINOMIAL REGRESSION MODEL 

In negative binomial regression, the mean of y is determined by the exposure time 𝑡 and a set of 𝑘 

regressor variables 𝑡ℎ𝑒 𝑥′𝑠. the expression relating these qualities is 

𝜇𝑖 = exp (ln(𝑡𝑖) + 𝛽1𝑥1𝑖 +  𝛽2𝑥2𝑖 + ⋯ + 𝛽𝑘𝑥𝑘𝑖) 

Often, 𝑥1 ≡ 1, in which case 𝛽1 is called the intercept. The 𝛽1, 𝛽2, 𝛽3 are unknown parameters 

that are estimated from a set of data, their estimates are symbolized as 𝑏1, 𝑏2, 𝑏3. 

The fundamental negative binomial regression model for an observation 𝑖 is given as; 

𝑃𝑟 (𝑌 = 𝑦𝑖 𝜇𝑖, 𝛼⁄ ) =
Γ(𝑦𝑖 + 𝛼−1)

Γ(𝛼−1Γ(𝑦𝑖 + 1))
(

1

1 + 𝛼𝜇𝑖
)𝛼−1

(
𝛼𝑦𝑖

1 + 𝛼𝜇𝑖)
)𝑦𝑖

 

 

3.4.1  MAXIMUM LIKELIHOOD BASED ESTIMATION 
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The regression coefficients are estimated using the method of maximum likelihood. The logarithm 

of the likelihood function is given as 

ℒ =  ∑ {ln [Γ(𝑦𝑖
𝑛
𝑖=1 + 𝛼−1)] − ln[Γ(𝛼−1)] − ln[Γ(𝑦𝑖 + 1)] − 𝛼−1 ln(1 + 𝛼𝑖𝜇𝑖) − 𝑦𝑖 ln(1 +

𝛼𝜇𝑖) + 𝑦𝑖 ln(𝛼) + 𝑦𝑖ln (𝜇𝑖)}. 

ℒ =  ∑ {(∑ ln (𝑗 +  𝛼−1)) − ln (Γ(𝑦𝑖 + 1)) − (𝑦𝑖 + 𝛼−1)ln (1 + 𝛼𝑖𝜇𝑖) + 𝑦𝑖ln (𝜇𝑖) +
𝑦𝑖−1
𝑗=0

𝑛
𝑖=1

𝑦𝑖ln (𝛼)} the first derivative of ℒ 

𝛿ℒ

𝛿𝛽𝑗
= ∑

𝑥𝑖𝑗(𝑦𝑖−𝜇𝑖)

1+𝛼𝜇𝑖

𝑛
𝑖=1 ,   j=1, 2, 3, ….,𝑘 

𝛿ℒ

𝛿𝛼
= ∑ {𝛼−2(ln(1 + 𝛼𝜇𝑖) −  ∑

1

𝑗 + 𝛼−1
) +

𝑦𝑖 − 𝜇𝑖

𝛼(1 + 𝛼𝜇𝑖)
}

𝑦𝑖−1

𝑗=1

𝑛

𝑖=1
. 

−
𝛿2ℒ

𝛿𝛽𝑟𝛿𝛽𝑠
= ∑

𝝁𝒊(1 + 𝜶𝝁𝒊)𝒙𝒊𝒓𝒙𝒊𝟓

(𝟏 + 𝜶𝜇𝑖)𝟐

𝒏

𝒊=𝟏

 

𝒓, 𝒔 = 1, 𝟐, … , 𝒌 

−
𝜹𝟐ℒ

𝜹𝜷𝒓𝜹𝜷𝒔
= ∑

𝝁𝒊(𝑦𝑖 − 𝜇𝑖+)𝑥𝑖𝑟

(𝟏 + 𝜶𝝁𝒊)𝟐

𝒏

𝒊=𝒊

 

𝒓 = 𝟏, 𝟐, … . , 𝒌 

𝜹𝟐ℒ

𝜹𝜶𝟐
= ∑{∑ (

𝑗

1 + 𝛼𝑗
)

2𝑦𝑖−1

𝑗=0

+ 2𝛼−3 ln(1 + 𝛼𝜇𝑖) −
2𝛼−2𝜇𝑖

1 + 𝛼𝜇𝑖
−

(𝑦𝑖 + 𝛼−1)

(1 + 𝛼𝜇𝑖)2

2

𝜇𝑖}

𝑛

𝑖=1

 

Equating the gradients to zero gives the following set of likelihood equations 

∑
𝑥𝑖𝑗(𝑦𝑖 − 𝜇)

1 + 𝛼𝜇𝑖

𝑛

𝑖=1
= 0   𝑗 = 1, 2, . . , 𝑘 

∑ {𝛼−2(ln(1 + 𝛼𝜇𝑖) − ∑
1

𝑗 + 𝛼−1
) +

𝑦𝑖 + 𝜇𝑖

𝛼(1 + 𝛼𝑖𝜇𝑖)
} = 0.

𝑦𝑖−1

𝑗=0

𝑛

𝑖=1
 

 

3.5  ZERO INFLATED MODELS 

Zero inflated model is a statistical model based on a zero-inflated probability distribution, that is 

a distribution that allows for frequent zero-valued observations. 

3.5.1  ZERO INFLATED POISSON (ZIP) 
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One well known zero-inflated model is Diane Lambert’s zero inflated poisson model, which 

concerns a random event containing excess zero-count data in unit time. 

The zero inflated poisson (ZIP) model employs two components that correspond to two zero 

generating processes. The first process is governed by a binary distribution that generates structural 

zeros. The second process is governed by a poisson distribution that generates counts some of 

which may be zero. The two model components are describes as follows 

𝑃𝑟(𝑦𝑖 = 0) = 𝜋 + (1 + 𝜋)𝑒−𝜆 

𝑃𝑟(𝑦𝑖 = ℎ𝑖) = (1 − 𝜋)
𝜆ℎ𝑖𝑒−𝜆

ℎ𝑖 !
 

Where the outcome variable 𝑦𝑖 has any non-negative integer value, 𝜆 is the expected poisson count 

for 𝑖𝑡ℎ individual; 𝜋 is the probability of extra zeros. The mean is (1 − 𝜋)𝜆 and the variance is 

𝜆(1 − 𝜋)(1 + 𝜋𝜆). 

 

3.5.2  ESTIMATES OF ZERO INFLATED POISSON 

The method of moments estimator are given by 

𝜆̂
𝑚0 =  

𝑠2+𝑚2

𝑚

   -1, 

Π̂𝑚0
=

𝑠2 −  𝑚

𝑠2 +  𝑚2 −  𝑚
 

Where 𝑚 is the sample mean and 𝑠2 is the sample variance. The maximum likelihood estimator is 

derived from the following equation 

𝑥 ̅(1 − 𝑒 𝜆̂𝑚𝑙) = 𝜆̂𝑚𝑙 (1 −
𝑛0

𝑛
). 

Where 𝑥 ̅ is the sample mean, and 
𝑛0

𝑛
 is the observed proportion of zeros. This can be solved by 

iteration and the maximum likelihood estimator for 𝜋 is given by 

Π̂𝑚𝑙 = 1 −
𝑥 ̅

𝜆̂𝑚𝑙

 

 

3.5.3  ZERO INFLATED NEGATIVE BINOMIAL (ZINB) REGRESSION MODEL 

The zero-inflated negative binomial (ZINB) regression model is used for count data that exhibit 

overdispersion and excess zeros. The data distribution combines the negative binomial distribution 

and the log it distribution. The positive value of Y are the nonnegative integers:0, 1, 2, and so on. 

The probability distribution of the ZINB random variable 𝑦𝑖 can be written as; 
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𝑃𝑟(𝑦𝑖 = 𝑗) = {
𝜋𝑖 + (1 + 𝜋𝑖)𝑔(𝑦𝑖 = 0)    𝑖𝑓 𝑗 = 0
(1 − 𝜋𝑖)𝑔(𝑦𝑖)                      𝑖𝑓 𝑗 > 0

 

 

Where 𝜋𝑖is the logistic link function defined below and 𝑔(𝑦𝑖) is the negative binomial 

distribution given by :𝑔(𝑦𝑖) = 𝑃𝑟(𝑌 = 𝜇𝑖 , 𝛼) =
Γ(𝑦𝑖+𝛼−1)

Γ(𝛼−1)Γ(𝑦𝑖+1)
(

1

1+𝛼𝜇𝑖
)

𝛼−1

(
𝛼𝜇𝑖

1+𝛼𝜇𝑖
)𝑦𝑖 

Exposure time 𝑡 can be included in the negative binomial component and a set of  𝑘 regressor 

variables (𝑡ℎ𝑒 𝑥′𝑠) the expression relating the equation is 

𝜇𝑖 = exp (𝑙𝑛(𝑡𝑖)) + 𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖 + ⋯ . +𝛽𝑘𝑥𝑘𝑖 

Often, 𝑥1 ≡ 1, the logistic link function 𝜋𝑖 given by; 

𝜋𝑖 =
𝜆𝑖

1 + 𝜆𝑖
 𝑤ℎ𝑒𝑟𝑒 𝜆𝑖 = exp(ln(𝑡𝑖)) + 𝑌1𝑍1𝑖 + 𝑌2𝑍2𝑖 + ⋯ . +𝑌𝑚𝑍𝑖𝑚) 

Where  (𝑡ℎ𝑒 𝑧′𝑠) are the regressor variables and 𝑡 is the exposure time. 

3.5.4  MAXIMUM LIKELIHOOD ESTIMATE FUNCTION 

The regress or coefficients are estimated using the method of maximum likelihood. The logarithm 

of the function is  

𝐿 =  𝐿1 + 𝐿2 + 𝐿3 − 𝐿4 

𝑤ℎ𝑒𝑟𝑒  𝐿1 = ∑ [𝜆𝑖 + (1 + 𝛼𝜇𝑖)
−𝛼−1

]
{𝑖:𝑦𝑖=0}

 

𝐿2 = ∑ ∑ 𝑙𝑛(𝑗 + 𝛼−1)
𝑦𝑖−1

𝑗=0
{𝑖:𝑦𝑖>0}

 

𝐿3 = ∑ {− ln(𝑦𝑖!) − (𝑦𝑖 + 𝛼−1) ln(1 + 𝛼𝜇𝑖) + 𝑦𝑖 ln(𝛼) + 𝑦𝑖 ln(𝜇𝑖)}

{𝑖:𝑦𝑖>0}

 

𝐿4 = ∑ ln (1 + 𝜆𝑖)
𝑛
𝑖=1 . 

3.6  AKAIKE INFORMATION CRITERION (AIC) 

AIC is an estimator of the sample prediction error and thereby relative quality of statistical models 

for a given set of data. Given a collection of models for the data, AIC estimates the quality of each 

model, relative to each of the other models. 

In estimating the amount of information lost by a model, AIC deals with the trade-off between the 

goodness of fit  of the model and the simplicity of the model. AIC is commonly used to fit statistics, 

it has two formulations; 

AIC(1) = −2[𝑙 − 𝑘] and AIC(𝑛) = −
2

𝑛
(𝑙 − 𝑘) 
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where 𝑘 is the number of predictors including the intercept. 

3.7  BAYESIAN INFORMATION CRITERION (BIC) 

BIC is a model selection among a finite set of models. The model with lower BIC is preferred. It 

is based, in part, on the likelihood function and it is closely related to AIC, it used to fit statistics. 

It has three formulation; 

BIC (𝑅) = 𝐷 − (𝑑𝑓) ln(𝑛) 

𝐵𝐼𝐶 (𝐿) = −2𝑙 + 𝑘𝑙𝑛(𝑛) 

𝐵𝐼𝐶 (𝑄) = −𝑛(𝑙 − 𝑘𝑙𝑛(𝑘)) 

Where 𝑑𝑓 is the residual degree of freedom. 

3.8  CHI-SQUARE TEST STATISTICS  

X2 measures the distance between the observed and expected counts across all cells and is 

computed as 𝑋2 = ∑
(𝑂−𝐸)2

𝐸𝑎𝑙𝑙 𝑐𝑒𝑙𝑙𝑠 , Where O is the observed count 𝑥𝑗 and E is the expected count 

𝑛𝜋̂𝑗 

3.8.1  P-VALUE 

This is the significant level of the chi-square test. This is the probability that s chi-square value 

with degree of freedom DF is equal to the value or greater. If the value is less than 0.05 ( or other 

appropriate value )the term is said to be statistically significant 

                                                                 RESULTS 

Table 4.1 description of data 

The table shows the basic information about the data file, it displays the number of observations 

in the file from the output we see that the number of observations is 4,412, the number of variables 

which is 10, the size of the file which is 75,004, the variable name which are docvis, age, income, 

female, black, Hispanic, married, physlim private and chronic, storage type, display format and 

variable label. 

Table 4.2 Summary of data 

The table provides information about the data file, which includes variable (docvis, married, 

female, physlim, private, chronic, income), number of observations (obs), mean (estimated values 

of the mean for each variable), standard deviation (std.Dev.), minimum (Min) and maximum(Max) 
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Table 4.1 description of data 

Table 4.2 summary of data 

 

Table 4.3 Poisson Regression  

The output of the table begins with the iteration log, which gives the values of the log likelihood 

starting with the null model. The last value in the iteration log is the final value of the log likelihood 

for the full model and is displayed again. The header information is presented next, on the right-

hand side, the number of observations used in the analysis (4,412) is given alone with the Wald 

chi-square statistic with 7 degree of freedom for the full model, followed by the P-value for the 

chi-square. The header also includes pseudo-𝑅2 below the header we have docvis which is the 

response variable in the poisson regression. Underneath docvis are the predictor variables and the 

intercept(_const.). The poisson regression coefficient, these are the estimated poisson regression 

coefficient for the model for each of the variables along with standard errors, z-score and p-values. 

The estat gof shows the pearson and deviance goodness of fit chi-square test. 
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Table 4.3 poisson regression 

 

 

 

Table 4.4 Negative Binomial Regression  

The dispersion on the top of the table refers to how the over dispersion is modeled. The default 

method is mean dispersion. The log likelihood is the log likelihood of the fitted model. The number 

of obs, is the number of observation used in the regression model. LR chi2(7), is the test statistics 

that all regression coefficients in the model are simultaneous equal to zero. Prob >chi2, is the 

probability of getting a LR test statistic as extreme as, or more so, than the observed under the null 

hypothesis. Pseudo 𝑅2, this is the McFadden’s R-square. Docvis, this is the response variable 

underneath are the predictor variables, the intercept and the dispersion parameter. Coef. are the 

estimated negative binomial coefficients for the model. Std.Err these are the standard errors for 

the regression coefficients and the dispersion parameter for the model. Z and P>|z|, these are the 

test statistics and p-value, respectively. /alpha, is the estimate of log of the dispersion parameter. 

Alpha this is the estimate of the dispersion parameter. 

4.5 Zero Inflated Poisson Regression  

The table begins with the iteration log giving the values of the log likelihoods starting with a model 

that has no predictors. Next comes the header information on the right-hand side the number of 

observations used, number of non zero observations are given alone with the likelihood ratio chi-

squared this is followed by the p-value for the chi-square. Below the header we find our poisson 

coefficient for each count predicting variables along with Standard errors, z-score, p-value. 

Following these are the logit coefficients for the variable predicting excess zeroes along with its 

standard errors, z-scores, and p-values 
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Table 4.4 negative binomial regression 

            Type equation here. 

 

Table 4.5 zero inflated poisson  
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4.6 Zero Inflated Negative Binomial  

The top half of the table contains coefficient for the factor change in the expected count for those 

in the not zero group. The bottom half, contains logit coefficients for the factor change in the odds 

of being in the always zero group /lnalpha is the natural log of alpha the dispersion parameter, 

alpha is the dispersion parameter of the count model.  

4.7 Comparison Of  The Models  

The first table in the output summarizes the parameter estimates from each of the tested models, 

for each models we see the exponentiated coefficients and their t-statistics in the first block of the 

table. Then for each NBM we see the estimated dispersion parameters. Next for the zero-inflated 

models we see the estimates from the logistic model predicting the certain zeros. In the last block 

of the table, a set of fit-statistics is provided for each of the models. This includes the log-

likelihood, BIC and AIC. Next we see a table with one line per model showing the maximum and 

mean differences in the observed versus predicted count. Next we have one table each of the 

models containing count by count information. In the last table, the tested models are compared to 

each other head to head using the tests appropriate to each comparison.   

Fig. 4.1  

The graph plots the residual from the tested models, the graph is used to eliminate a model that 

does not fit well. 

Table 4.6 zero inflated negative binomial 

 

 

 

 

 

 

 

 

 

Table 4.7 comparison of the model 
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Fig. 4.1: A Graph that connect Observed-Predicted with Number of Doctor visits 

 

 

DISCUSSION OF RESULTS  

In line with our stated aim and objectives, this research work has been able to achieve the 

following; 

i) It used data obtained from http://www.stata-press.com to model docvis among age, 

income, female, black, Hispanic, married, physlim, private, chronic. 

ii) It has analyzed the data as fitted by poisson regression model(PRM), negative binomial 

regression model(NBRM), zero-inflated poisson(ZIP), zero-inflated negative binomial. 

iii) Finally it has compared between the four model to discover which model fits perfectly. 

The interpretation of table 4.1 gives a clear description of the data. Table 4.2 is the overall summary 

of the count data, the mean number of docvis is approximately 3.957 and the variance is (3.957)2 

= 15.06, which is substantially more than the mean this leads to our first regression. Table 4.3 

Coef. - the poisson coefficient can be interpreted as follows; for a one unit change in the predictor 

variable, the difference in logs of the expected counts is expected to change by the respective 

regression coefficient, given the other predictor variables in the model are held constant. Age- this 

is the poisson regression estimate for a one unit increase in age, given the other variables are held 

constant in the model. If a patient were to increase docvis by one unit point, the difference in the 

logs of expected counts would be expected to increase by 0.032 unit, while holding the other 

variables constant. Income - this is the poisson regression estimate for one unit increase in income, 

given the other variables are held constant in the model. If a patient were to increase docvis by one 

unit point, the difference in the logs of expected counts would be expected to increase by 0.004 
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unit, while holding the other variables constant. Female - this is the poisson regression estimate 

for a one unit increase in number of female, given the other variables are held constant in the 

model. If a female patient were to increase docvis by one unit point, the difference in the logs of 

expected counts would be expected to increase by 0.49 unit, while holding the other variables 

constant. Married - this is the poisson regression estimate for a one unit increase in number of 

married patient, given the other variables are held constant in the model. If a married patient were 

to increase docvis by one unit point, the difference in the logs of expected counts would be 

expected to decrease by 0.02 unit, while holding the other variables constant. Physlim this is the 

poisson regression estimate for one unit increase in number of physlim patient, given the other 

variables are held constant in the model. If a physlim patient were to increase docvis by one unit 

point, the difference in the logs of expected counts would be expected to increase by 0.46 unit, 

while holding the other variables constant. From our output we see that private patient and chronic 

patients also increase their unit number of docvis by 0.77 and 0.98 respectively. _const. – this is 

poisson regression estimate when all variables are estimated at point zero. For age, income, female, 

married, physlim, private and chronic estimated at point zero. The log of the expected count of 

docvis is -0.40 unit. The standard error- these are the standard error of each of the poisson 

regression coefficient used to estimated the z test statistics. 

The z-test statistics testing the slope for age on docvis is zero given the other variables are in the 

model, is (0.031/0.008) -4.06 with an associated P-value of < 0.0001 with alpha been set as 0.05, 

we would reject the null hypothesis and conclude that poisson regression coefficient for age is 

statistically different from zero. We see that income, female, physlim, private and chronic has an 

associated P-values <0.0001 with alpha been set as 0.05 we would reject the null hypothesis and 

conclude the their poisson regression coefficients is statistically different from zero. Except 

married which has an associated P-value of 0.260 with alpha set at 0.05, we would fail to reject 

the null hypothesis and conclude that the poisson regression coefficient for married is not 

statistically not different from zero. The estat gof which compares the observed distribution 

predicted by poisson distribution. The highly significant test statistics indicates that this is not a 

very good choice. Which leads to us running another analysis but this time we using negative 

binomial regression, as displayed in the next table. Table 4.4, the Coef.,Std. Err., z and P >|z| has 

same interpretation with the poisson regression estimate /lnalpha is the estimate of the log of 

dispersion parameter, alpha the estimate of the dispersion parameter.𝛼 =
exp(𝑙𝑛𝑎𝑙𝑝ℎ𝑎) 1.652078.  the dispersion parameter of alpha is greater than zero that is the data are 

over dispersed. The likelihood ratio test of alpha=0 at the bottom is the test of overdispersion 

parameter alpha. When the overdispersion parameter is equal to zero the test statistics is -2[-

18119.329-(-9782.2197) = 16674.22 with an associated p-value 0f <0.0001. the large test statistic 

would suggest that the response variable is overdispersed and is not sufficiently described by the 

simpler poisson distribution.  Table 4.5 From our result in the non-zero group we see that the z-

test for predictors income, female, married, physlim, private, chronic and the intercept _cons are 

all statistically significant we would reject the null hypothesis and conclude that the regression 

coefficients has been found to be statistically different from zero, except the predictor age. For the 

zero group the z-test for the predictors age, income, female, married, physlim, private, chronic and 

the intercept _cons are all statistically significant so we would reject the null hypothesis and 

conclude that the regression coefficients has been found to be statistically different from zero. 

Table 4.6 from our result In the non-zero group the predicted number of docvis among income, 
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female, physlim, private, chronic are significant except married. The bottom half, contains logit 

coefficients for the factor change in the odds of being in the always zero group. The predicted 

number of docvis among the variables is statistically significant except age. alpha the dispersion 

parameter is greater than zero, this suggests that our data is overdispersed. Table 4.7 from the last 

block of the model parameter and fit we see that the two model aic and bic are extremely close.the 

parameter estimates are nearly identical. from the residuals by count table we see that the NBRM 

and ZINB did better at this predicted and overall the two models had a lower mean absolute 

differences between the predicted and observed values. At this point the NBM and ZINB is looking 

more appropriate than the PRM and ZIP. Next we have one table for each of the models containing 

counts by count information. In these four tables, shows the output for counts 0-9, the actual 

proportion from each models, the absolute differences is included, as in the given counts 

distribution to a pearson chi-sqaure statistics comparing that actual distribution of the data and the 

distribution proposed by the model for a given row. The pearson statistics which is calculate as 

𝑁(|𝑑𝑖𝑓𝑓|)2//𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑, where N is the number of observations in the dataset. Looking closely 

at the sum of the pearson columns gives us a sense of how close the predicted proportions were to 

the actual proportions using this method to compare, the NBRM and ZINB appears better than the 

PRM and ZIP. Finally in the next the result suggests which model is most preferred by the given 

comparison strength of the evidences supporting this preference. When we compare the four 

models using BIC and AIC the NBRM and ZINB is preferred over PRM and ZIP. Fig 4.1 is a 

graph that plots the residuals from the tested models, the models with lines closest to zero should 

be considered for our data, at the zero and one count NBRM and ZINB appears better than the 

PRM and ZIP models. 

6.1 CONCLUSION 

Categorically, this work can be summarized without any fear of contradiction the poisson 

regression model (PRM),  negative binomial regression model(NBRM) which is the base for the 

other  regression model  zero-inflated poisson (ZIP) and zero-inflated(ZINB) respectively fits this 

work except the fact that some models fits better than the others. The PRM doesn’t fit reasonably 

well because if its strict conditions of equal conditional mean and equal conditional variances E(x) 

= Var(x). as a result leading to under predictions of zeros. While NBRM because of its flexibility 

fits reasonable well because it allows the variances to be greater than the mean called over-

dispersion. The zero-inflated model assumes two groups, one has no chance of going beyond zeros. 

The other group may have zero count but the probability of having a positive count is non-zero. In 

conclusion the ZINB and NBRM fits better than the other two models.  

6.2 RECOMMENDATION 

Recommendations are hereby presented; 

1) NBRM often maybe good enough for the modeling of count data so the need of zero 

inflated models might be questioned. 

2) Because of PRM strict conditions it makes its result to be inconsistent and biased. 

3) This work can furthered for verification purposes or contribution by any researcher who 

picks interest in it. 
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6.3   CONTRIBUTION TO KNOWLEDGE 

The use of Poisson Regression Model with application to count data ease the analysis, but because 

poisson regression model cannot handle overdispersion, its results are inconsistent and baised. It 

is seen that negative binomial model because of its flexibility its results are more consistent which 

maybe suitable for modeling count data. In the case of several zeros, zero inflated negative 

binomial model is preferred to pure negative binomial model. 

 

REFERENCES 

Agresti, A. (2002). Categorical data analysis. 2nd edition. New York, Wiley. 

Aiken, L. S. and West, S. G. (1991). Multiple Regression: testing and interpreting 

 interactions, Newbury Park, CA: Sage. 

Alexander, N., R. Moyeed and J. Stander. (2000). Spatial modeling of individual-level 

 parasite counts using the negative binomial distribution. Biostatistics 1: 453–463. 

Bailer A.J. and L.T. Stayner (1997). Modeling fatal injury rates using poisson regression. Journal 

of safety research;28:177-186. 

Bair, H. (2013). Poisson regression: Lack of fit ≠ Overdispersion, StatNews #86, cornell   

 University, http://www.cscu.cornell.edu/news/ststnews/stnews86.pdf . 

Beckett,S., Jee, J., Ncube, T.,Pompilus, S., Washington, Q., Singh, A., Pal, N. (2014). Zero-

inflated poisson (ZIP) distribution: parameter estimated and applications to model data 

from natural calamities. Involve: A Journal of Mathematics 7(6):751-767. 

Cameron, A. C. and  Trivedi, P. K.  (1998). Regression Analysis of Count 

Data.  NewYork:  Cambridge Press. 

Cameron, A. C. and  Trivedi, P. K.  (2009).  Microeconometrics Using Stata.  CollegeStation, 

TX:  Stata Press. 

Cameron, A. C.   (2008). Advances in Count Data Regression Talk for the Applied Statistics 

Workshop,March 28, 2009. http://cameron.econ.ucdavis.edu/racd/count.html. 

Cameron, A.C. and Trivedi, P.K. (1986). Econometric models on count data comparison and 

applications of some estimates and tests. Journal of Applied Econometrics, 1(1), 29-

53. 

Dobson,A.J. (2002). An introduction to generalized linear model,2nd ed., New York: Chapman & 

Hall/CRC. 

Dupont, W. D.  (2002).  Statistical Modeling for Biomedical Researchers:  A Simple Introduction 

to the Analysis of Complex Data.  New York:  Cambridge Press. 

Famoye, F., Wulu, J. T. Jr.,and K. P. Singh. (2004). On the generalized Poisson regression model 

with an application to accident data. Journal of Data Science 2: 287–295. 

Ferenc M., Rita Hegedus (2014). The use of poisson regression in the sociological study of suicide. 

Journal of sociology and social policy;Vol.5,No2 

Gardner, W., Mulvey, E.P. and Shaw E. C. (1995). Regression analyses of counts and rates: 

 poisson, overdispersed poisson and negative binomial models.  Phychological 

Bulletin;118: 392-404. 

Greene, W. H. (1994). Econometrics analysis. New York: Stern School of Business, New York 

University, Department of Economics. 

http://www.iiardpub.org/
http://www.cscu.cornell.edu/news/ststnews/stnews86.pdf
http://cameron.econ.ucdavis.edu/racd/count.html


International Journal of Applied Science and Mathematical Theory E- ISSN 2489-009X P-ISSN 2695-1908,  
Vol 6. No.1 2020 www.iiardpub.org 

 

 

 

 IIARD – International Institute of Academic Research and Development 
 

Page 68 

Hall, D. B. and Zhengang, Z. (2004). Marginal models for zero inflated clustered data. Statistical 

modeling, 4:161-180.  

Hilbe, J.M. (2011). Negative binomial regression.  Cambridge University Press, Cambridge 

Joseph M. Hilbe (2014). Modeling count data. Cambridge University press, Cambridge. 

Jerald F. Lawless (1987). Negative binomial and mixed poisson regression. Journal of statistics; 

15: https://doi.org/10.2307/3314912  

Long, J. S. (1997). Regression Models for Categorical and Limited Dependent 

Variables.Thousand Oaks, CA: Sage Publications. 

Long, J. S. and Freese, J.  (2006).  Regression Models for Categorical Dependent Variables Using 

Stata, Second Edition.  College Station, TX:  Stata Press 

Monday O. Adenomon (2017). Fitting a poisson regression model to reported deaths from 

HIV/AIDS in Nigeria. Journal of statistical distributions and applications; 3(3):56-

60. 

Mc Cullagh, P. and Nelder, J.A. (1989). Generalized Linear Models, 2nd ed. London; Chapman 

and Hall. 

Sileshi, G., G. Hailu,and G. I. Nyadzi. (2009). Traditional occupancy–abundance models are 

inadequate for zero-inflated ecological count data. Ecological Modeling 220: 1764–

1775. 

White, G. C.,and R. E. Bennetts. 1996. Analysis of frequency count data using the negative 

binomial distribution. Ecology 77: 2549–2557. 

Wan F. (2011). Applying fixed effects panel count model to examine road accident occurrence. 

Journal of applied-science;11:1185-1191. 

Ver Hoef, J. and Boveng, P. L. (2007). Quasi-poisson vs Negative Binomial Regression: How 

should we model overdispersed count data? Ecology88:2766-2772. 

http://doi.org/10.1890/07-0043.1 

Zamani, H., Ismail, N. (2013). Score test for testing zero-inflated poisson regression against zero-

inflated generalized poisson alternatives. Journal of Applied  Statistics 40(9):2056-

2068 

 

 

 

 

http://www.iiardpub.org/
http://doi.org/10.1890/07-0043.1

