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ABSTRACT

The problem was to apply Poisson regression and its variants to modeling doctor visits. The set of
explanatory variables under consideration was tested and subsequently the final model was
determined. The MLE. Was used was for estimation using the Stata software package. The
research resulted in selecting the count model variant with the best estimates using information
criteria. In addition, where there was overdispersion, Negative binomial regression gave better
estimates then Poisson model.
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INTRODUCTION
1.1 BACKGROUND OF STUDY

A visit to doctor, also known as physician office visit or ward round is a meeting between a patient
with a physician to get health advice of treatment for a symptom or condition. According to a
survey in the in the United States a physician typically sees between fifty and one hundred patients
per week, but the rate of visitation may vary with medical specialty, but differs one little by
community size. The four great cornerstone of diagnostic medicine are anatomy (structure what
is there), physiology (how the structure work) pathology (what goes wrong with anatomy and
physiology) and psychology (mind and behavior), the physician should consider the patient in their
“well” context rather than simply as a walking medical condition. This means the socio-political
context of the patient (family, work, stress, beliefs) should be assessed as it often offers vital clues
to the patient’s condition and further management. The attempt to solve physical problems led
gradually to a statistical data type. In the analysis of data it is necessary to first comprehend the
type of data before deciding the modeling approach to be used in the context of modeling the
discrete, non negative nature count of a dependent variable, the use of least square regression
models several methodological limitations and statistical properties (Miaou, 1993; Karlaftis and
tarko,1998; Shankar,1995). Unlike the classical linear regression models for count and counts are
non-negative integer (0,1,2,3...) and these integers arise from counting rather than ranking. Count
when related to other variables would be treated as dependent variables. The Poisson regression
model is a good starting point of count data modeling. Many examples such as visits to doctor, the
number of patent awarded to a firm, the number of road accident death, the number of dengue
fever cases are restricted to a single digit or integer with quite low number of events (Cameron and
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Trivedi, 1998, Hausman et al, 1984; Radin et al, 1996). For such feature of data, Poisson regression
has more advantages over conventional linear model (Chin and Quddus, 2003; Shankar, 1995).
Poisson regression suffers one potential problem, this is related to the assumption of equality of
the mean and variance a property called equidispersion. When this assumption is violated, for
instance the variances excess the mean, an overdispersion occurs. Failure to control for
overdispersion will lead to inconsistent estimates, biased in standard error and inflated test
statistics. Hence in modeling count data, it is a usual practice after the development of Poisson
regression model to proceed with analysis of correcting for overdispersion if it exists. One of the
approaches to modeling overdispersion is to use quasi likelihood estimation techniques proposed
by Wedderbum (1974). The analysis of data in this study focuses on the use of Poisson regression
with application to visits to Doctor. This is because Poisson regression has more advantages over
conventional linear model.

Therefore, it appears worthwhile to devote effort in using Poisson regression to modeling doctor’s
home visit among the aged in Nigeria with a view of evaluating the impact of doctors home visit
among the aged.

METHODOLOGY

Having reviewed related work on count data model-Poisson regression, it is of need to gather data
which will be utilized as a part of figuring a reasonable and practical model for this project.
Conversely, this chapter depicts the methodology and its point of utilization. It also clarifies the
research method and the research that should be utilized and the techniques utilized to guarantee
the unwavering quality and legitimacy of the research.

3.1 Count Data Model

Count data is a statistical data type in which the observations can take only non- negative integer
values {0,1,2, 3,...} and integers arise from counting. An individual piece of count data is often
termed a count variable that is count variable indicates the number of times something happened.
When count variable is treated as a random variable, the Poisson distribution is commonly used to
represent its distribution. We have several count models bur in the project we consider Poisson
regression model (PRM), which is one of the foundation of other count models.

3.2 Poisson Distribution

In Probability Theory and Statistics, the Poisson distribution is a discrete Probability distribution
that expresses the Probability of a given number of events occurring in a fixed interval of time or
space. If these occurs with a known constant rate and independently of the time since the last event.
The Poisson distribution can also be used for the number of events in other specified intervals such
as distance, area or volume. The Poisson distribution is popular for modeling the number of time
an event occurs in an interval of time or space. Example are The Poisson distribution may be useful
to model events such as: The number of Meteorites greater than 1 meter diameter that strike Earth
in a year, The number of Patients arriving in an Emergency room between 10pm to 11pm, The
number of Photons hitting in particular time interval and the number of Doctor’s visit to Patients
per annual.
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3.22 ASSUMPTIONS AND VALIDITY

The Poisson distribution is an appropriate model if the following assumptions are true where kls
the number of times an event occurs in an interval and k can take values 0,1,2,....The occurrences
of one event do not affect the Probability that a second event will occur. That is, events occur
independently, The average rate at which events occurs is constant, Two events cannot occur at
exactly the same instant instead at each very small sub-interval exactly one event either occurs or
does not occur, The actual Probability distribution is given by a binomial distribution and the
number of trials is sufficiently bigger that the number of successes one is asking about and If these
conditions are true then is a Poisson random variable and the distribution of k is a Poisson
distribution.

3.2.3 Probability of Events For A Poisson Distribution

An event can occur 0,1,2,3,... times in an interval. The average number of events in an interval is
designatedi(lambda). A is the event rate, also called the rate parameter. The Probability of
observing K event in an interval is given by the equation

e Mk
K!

P(keventsininterval) =

Where , A is the average number of events per interval. e is the number 2.71828 .... (Euler’s
number) the base of the natural logarithms. K takes the values0,1,2,3 .....

K!'=k x (k—1) x (k—2) X ...x 2 x 1 is the factorial of K.

This equation is the Probability mass function (PMF) for a Poisson distribution. The equation can
be adapted if instead of the average number of events A, we are given a time rate r for the events

to happen. Then A= rt (with r in unit 1/time), andP(Keventsinintervalt) = e"”%

3.24 DEFINITION

A discrete random variable x is said to have a Poisson distribution with parameter A> 0, if for k =
0,1,2, ..., the Probability mass function of x is given by

aKe—2

F(k;A) =PrX=x) = —

The positive real number A is equal to the expected value of x and also to us variance.
A =E(x) =Var(x).
The Poisson distribution can be applied to systems with large number of possible events, each of

which is rare. How many such events will occur during a fixed time interval? Under the right
circumstances, this is a random number with a Poisson distribution. The conventional definition
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of Poisson distribution contains two terms that can easily overflow on Computers A* to k! can
also produce a rounding error that is very large compared to e~ and therefore give an erroneous
result. For numerical stability the Poisson Probability Mass Function should therefore be evaluated
as: F(k;A) = exp{kInk — A — InI'(k + 1)} which is Mathematically equivalent but numerically
stable. The natural logarithm of the Gamma Function can be obtained.

3.3 POISSON REGRESSION

Poisson regression is a generalized linear model (GLM is a flexible generalization of ordinary
linear regression that allows response variable that have error distribution models other than
normal distribution) form of regression analysis used to model count data and contingency tables.
Poisson regression assumes the response variable Y has a Poisson distribution and assumes the
logarithm of its expected value can be modeled by a linear combination of unknown parameters.
A Poisson regression model is sometimes known as a log-linear model, especially when used to
model contingency tables.

3.3.1 POISSON REGRESSION MODEL
Is x € R™ is a vector of independent variable, then the model takes the form

log (E (%)) = a + f'x where « € R and 8 € R™. Sometimes this is written more compactly as

log|E 2)) = 6’x, where x is now an (n +1)- dimensional vector consisting of n independent
X

variables concatenated to a vector of one. Here 8 is simply x concatenated tofS. Thus, when given
a Poisson regression model 6 and an input vector x, the predicted mean of the associated Poisson
distribution is given by

E(%)= 0~

X
3.3.2 Poisson Regression Model Variables

In Poisson regression response/outcome variable Y is a count. But we can also have %,the rate (or

incidence) as the response variable, where t is an interval representing time, space or some other
grouping. Explanatory variable(s),X = (x4, x3,...... X)) can be continuous or a combination of
continuous and categorical variables. Convention is to call such a model “Poisson regression”.

If y/t is the variable of interest then even with all categorical predictors, the regression model will
be known as Poisson regression model and If Y; are independent observations with corresponding
values x; of the predictor variables, then 8 can be estimated by Maximum Likelihood. The
Maximum-likelihood estimates lack a closed-form expression and must be found by numerical
methods. The Probability surface for Maximum-likelihood Poisson regression is always concave,
making Newton-Raphson or other gradient based methods appropriate estimation techniques.

3.3.3 MAXIMUM LIKELIHOOD BASED PARAMETER ESTIMATES.
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Given a set of parameter 6 and an input vectorx, the mean of the predicted Poisson distribution,

—-0rx

as stated earlier is given by P G 9) = (X /yDe™* = e¥0Xee" 7 /yl,

Now suppose we are given a data set consisting of m vectorsx;eR"*1, i=1,2,..., m along with a
set of m values y,, ....., ¥, € N. Then, for a given set of parameter, the Probability of attaining
this particular set of data is given by

m

IxX; — elxi
P(Yy, ey Y/ X1, ey X3 ) = Heyie e [y
i=1
By the method of Maximum likelihood, we wish to find the set parameters 6 that makes this
Probability as large as possible. To do this, the equation is first rewritten as a likelihood function

in terms of 8:
9 =
i) =[Jore
’ i=1

Note that the expression on the right hand side has not actually changed. A formula in this form is
typically difficult to work with; instead one uses thelog — likelihood.

m
(i) - S
X)L '
1=

Notice that the parameter fonly appears in the first two terms of each term in the summation.
Therefore, given that we are only interested in finding the best value of 6we may drop the y;! and
simply write
0(0/X,Y) = T, "% — 7%
To find a Maximum likelihood, we need to solve an equation

0/X,Y
NCZESTN

60

This has no closed-form solution. However, the negative, log-likelihood —€(6/X,Y) is a convex
function and so standard convex optimization techniques such as gradient descent can be applied
to find the optimal value of6.

3.3.4 Poission Regression in Practice

Poisson regression may be appropriate when the dependent variable is a count, for instance the
event of doctor’s visit. The event must be independent in the sense that the arrival of one Patient
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will not make another less or more likely but the Probability per unit time of events is understood
to be related to covariates such as time of day.

3.3.5 Exposure and Offset

Poisson regression may also be appropriate for the rate of data, where the rate is a count of events
divided by some measure of the unit’s exposure (a particular unit of observation). For example,
biologist may count the number of tree observations, exposure would be unit area, and rate would
be the number species per unit area. In Poisson regression that is handled as an offset, where the
exposure variable enters on the right-hand side of the equation but with parameter estimation (for
log (exposure)) constrained to 1.

log (E(Y/x)) = log(exposure) + 6'xwhich implies

EY/x ,
log(E(Y/x)) = log(exposure) = log oxposure) = 9'x.

3.3.6 OVERDISPERSION

A characteristic of Poisson distribution is that its mean is equal to its variances. In certain
circumstances, it will be found that the observed variances that the observed variances is the greater
than the mean, this is known as overdispersion and indicates the model to be appropriate. A
common reason is the omission of relevant explanatory variable or dependent observations. Under
some circumstances, the problem of overdispersion can be solved by using quasi-likelihood
estimation or a negative binomial distribution instead. Ver Hoef and Boveng described the
difference between quasi-Poisson (also called overdispersion with quasi-likelihood) and negative
binomial (equivalent to gamma-Poisson) as follows If E(Y) = uThe quasi-Poisson model
assumes var(Y) =6u while the gamma-Poisson assumes var(Y) = u(1 + kp) is where 8 the
quasi-Poisson over dispersion parameter, and k is the shape parameter of the negative binomial
distribution for both models, parameters are estimated using iteratively reweighted least squares.
For quasi-Poisson, the weights arep/6.

3.4 NEGATIVE BINOMIAL REGRESSION MODEL

In negative binomial regression, the mean of y is determined by the exposure time t and a set of k
regressor variables the x's. the expression relating these qualities is

pi = exp(In(t;) + Brx1; + Poxzi + -+ + PrXki)

Often, x; = 1, in which case B; is called the intercept. The 8,, B, B3 are unknown parameters
that are estimated from a set of data, their estimates are symbolized as b4, b,, bs.

The fundamental negative binomial regression model for an observation i is given as;

F(y;+a™) 1 1, ay
M@ T+ ) Tram T+ am)

i

B (Y =yi/u,a) = )Y

1+ ay;

341 MAXIMUM LIKELIHOOD BASED ESTIMATION
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The regression coefficients are estimated using the method of maximum likelihood. The logarithm
of the likelihood function is given as

L= ZL{In[fyi+a™)] = In[[(@™ )] = In[l'(y; + D] —a™ ' In(1 + ;) — y; In(1 +

ap;) + yiIn(a) + yiln(w;)}-

L= AES G+ @) = In(T; + 1) = O + a™HIn(L + ap) + yiln(u) +
v;In(a)} the first derivative of £

8L on X0tk .
6B] - i=1 1+ap; s _] 1, 2, 3, ,k
N (@21 + aw) yz G P Rl

n
8 _\ A+ api)xicxis
6,Br6.85 =1 (1 + a.ui)z

rs=12, ..,k

n
8L N — )X
6Br0Bs & (1+aw)?

r=12 ...,k

8L o i YV 2072y, (i +a b’
— = +2a73In(1 + aw;) — - ;
Sa? ;{; <1 + aj> @ In(l+ aw) 1+au; (14 au)? i

Equating the gradients to zero gives the following set of likelihood equations

n X . —
E ”(y‘—‘u)=0j=1,2,__,k
i=1 1+ay

" vier 1 Vi + 1
a‘21n1+a-—z - + : =0
Zi:l{ (In€ i) j=0J + “_1) a(l+ ai.ui)}

3.5 ZERO INFLATED MODELS

Zero inflated model is a statistical model based on a zero-inflated probability distribution, that is
a distribution that allows for frequent zero-valued observations.

3.5.1 ZERO INFLATED POISSON (ZIP)
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One well known zero-inflated model is Diane Lambert’s zero inflated poisson model, which
concerns a random event containing excess zero-count data in unit time.

The zero inflated poisson (ZIP) model employs two components that correspond to two zero
generating processes. The first process is governed by a binary distribution that generates structural
zeros. The second process is governed by a poisson distribution that generates counts some of
which may be zero. The two model components are describes as follows

P(y;=0)=m+ (1+me™*

Ahje=*
h;!

Pr(yi = hi) = (1 - T[)
Where the outcome variable y; has any non-negative integer value, A is the expected poisson count

for i*" individual; 7 is the probability of extra zeros. The mean is (1 — 7)A and the variance is
A1 —m)(1 + mA).

3.5.2 ESTIMATES OF ZERO INFLATED POISSON

The method of moments estimator are given by

— s2—m
Mo s24 m2—m

Where m is the sample mean and s? is the sample variance. The maximum likelihood estimator is
derived from the following equation

(1 —etm) = A (1- %)

Where X is the sample mean, and % is the observed proportion of zeros. This can be solved by
iteration and the maximum likelihood estimator for m is given by

i 1 X
1= 1=
" Aml

3.5.3 ZERO INFLATED NEGATIVE BINOMIAL (ZINB) REGRESSION MODEL

The zero-inflated negative binomial (ZINB) regression model is used for count data that exhibit
overdispersion and excess zeros. The data distribution combines the negative binomial distribution
and the log it distribution. The positive value of Y are the nonnegative integers:0, 1, 2, and so on.
The probability distribution of the ZINB random variable y; can be written as;
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T+ (1 +m)gly; =0) ifj=0

RO=D={(] — )9 ifj >0

Where ;is the logistic link function defined below and g (y;) is the negative binomial

[(yi+a™?) ( 1 )a_l au; )Yi

distribution given by :g(y;) = B.(Y = y;, @) = G \iran e

Exposure time t can be included in the negative binomial component and a set of k regressor
variables (the x's) the expression relating the equation is

pi = exp(In(t;)) + Brxy; + Baxoi + -+ +PrXk;
Often, x; = 1, the logistic link function m; given by;

;= 1 +l/1 where Ai = exp(ln(ti)) + leli + YzZzl- + .- +Ylem)
L

Where (the z's) are the regressor variables and t is the exposure time.
354 MAXIMUM LIKELIHOOD ESTIMATE FUNCTION

The regress or coefficients are estimated using the method of maximum likelihood. The logarithm
of the function is

L: L1+L2+L3_L4

where L; = Z [+ + a/,tl-)‘“_l]
{i:y;=0}

yi—1
L, = Z z In(j +a™)
(iy>o 70
Li= ) (=0 = i+ @I+ auy) + (@) + yi In(w))
{i:y;>0}

Ly =Y In(1+ 1).
3.6 AKAIKE INFORMATION CRITERION (AIC)

AIC is an estimator of the sample prediction error and thereby relative quality of statistical models
for a given set of data. Given a collection of models for the data, AIC estimates the quality of each
model, relative to each of the other models.

In estimating the amount of information lost by a model, AIC deals with the trade-off between the
goodness of fit of the model and the simplicity of the model. AIC is commonly used to fit statistics,
it has two formulations;

AIC(1) = —2[1 — k] and AIC(n) = —= (1 — k)
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where k is the number of predictors including the intercept.
3.7 BAYESIAN INFORMATION CRITERION (BIC)

BIC is a model selection among a finite set of models. The model with lower BIC is preferred. It
is based, in part, on the likelihood function and it is closely related to AIC, it used to fit statistics.

It has three formulation;

BIC (R) = D — (df) In(n)

BIC (L) = =2l + kin(n)

BIC (Q) = —n(l — kin(k))

Where df is the residual degree of freedom.
3.8 CHI-SQUARE TEST STATISTICS

X2 measures the distance between the observed and expected counts across all cells and is
—_m\2
computed as X? = Dail cells .

E
nnj

, Where O is the observed count x; and E is the expected count

3.8.1 P-VALUE

This is the significant level of the chi-square test. This is the probability that s chi-square value
with degree of freedom DF is equal to the value or greater. If the value is less than 0.05 ( or other
appropriate value )the term is said to be statistically significant

RESULTS
Table 4.1 description of data

The table shows the basic information about the data file, it displays the number of observations
in the file from the output we see that the number of observations is 4,412, the number of variables
which is 10, the size of the file which is 75,004, the variable name which are docvis, age, income,
female, black, Hispanic, married, physlim private and chronic, storage type, display format and
variable label.

Table 4.2 Summary of data

The table provides information about the data file, which includes variable (docvis, married,
female, physlim, private, chronic, income), number of observations (obs), mean (estimated values
of the mean for each variable), standard deviation (std.Dev.), minimum (Min) and maximum(Max)
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Table 4.1 description of data

obs: 4,412
vars: 10
Variable Obs Mean Std. Dev. Min Max
docvis 4,412 3.957389 7.947601 0 134
married 4,412 .6357661 .4812692 0 1 S
female 4,412 .4718948 .4992661 0 1
physlim 4,412 .1656845 .3718393 0 1
private 4,412 .7853581 .4106202 0 1
chronic 4,412 .3263826 .4689423 0 1 i
income 4,412 34.34018 29.03987 -49,.999 280.777 :§:°n
chronic pyte $8.0g = 1 1 a chronic condition

Table 4.2 summary of data

Table 4.3 Poisson Regression

The output of the table begins with the iteration log, which gives the values of the log likelihood
starting with the null model. The last value in the iteration log is the final value of the log likelihood
for the full model and is displayed again. The header information is presented next, on the right-
hand side, the number of observations used in the analysis (4,412) is given alone with the Wald
chi-square statistic with 7 degree of freedom for the full model, followed by the P-value for the
chi-square. The header also includes pseudo-R? below the header we have docvis which is the
response variable in the poisson regression. Underneath docvis are the predictor variables and the
intercept(_const.). The poisson regression coefficient, these are the estimated poisson regression
coefficient for the model for each of the variables along with standard errors, z-score and p-values.
The estat gof shows the pearson and deviance goodness of fit chi-square test.
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Table 4.3 poisson regression

poisson docvis age income female married physlim private chronic

teration O: log likelihood = —-18120.776
s stat go
Deviance goodness—of—fit = 36es8s83 .83
Prob > chiXZ (4411) = O .0000 bs = 4,412
= 9621 .15
Pearson goodness—of—fit = 70404 .5 = 0.0000
Prob > chiZXZ(4411) O .000O0 = 0.2098
docvis Coef. Std. Err. =z P>lz| [95% Conf. Interval]l
age -0313875 -0077222 4.06 O .000 -0162522 .04a65228
income -0040537 -0002443 16.60 O .000 -.003575 -0045324
female .4917597 -0161212 30.50 0.000 .4601628 -.5233566
married —.0180317 -0159971 -1.13 0.260
physlim -.4634731 -0173834 26 .66 O0.000
private -7746199 -0278532 27.81 0 .000
chronic .979682 .016489 59.41 0.000
_cons —.4030394 -0411802 -9.79 0.000

Table 4.4 Negative Binomial Regression

The dispersion on the top of the table refers to how the over dispersi

method is mean dispersion. The log likelihood is the log likelihood of tl

of obs, is the number of observation used in the regression model. LR chi2(7), is the test statistics
that all regression coefficients in the model are simultaneous equal to zero. Prob >chi2, is the
probability of getting a LR test statistic as extreme as, or more so, than the observed under the null
hypothesis. Pseudo R?, this is the McFadden’s R-square. Docvis, this is the response variable
underneath are the predictor variables, the intercept and the dispersion parameter. Coef. are the
estimated negative binomial coefficients for the model. Std.Err these are the standard errors for
the regression coefficients and the dispersion parameter for the model. Z and P>|z|, these are the
test statistics and p-value, respectively. /alpha, is the estimate of log of the dispersion parameter.
Alpha this is the estimate of the dispersion parameter.

4.5 Zero Inflated Poisson Regression

The table begins with the iteration log giving the values of the log likelihoods starting with a model
that has no predictors. Next comes the header information on the right-hand side the number of
observations used, number of non zero observations are given alone with the likelihood ratio chi-
squared this is followed by the p-value for the chi-square. Below the header we find our poisson
coefficient for each count predicting variables along with Standard errors, z-score, p-value.
Following these are the logit coefficients for the variable predicting excess zeroes along with its
standard errors, z-scores, and p-values
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Table 4.4 negative binomial regression

5 . nbreg docvis age income female married physlim private chronic , nolog

Negative binomial regression

Number of obs

LR chi2 (7)
Dispersion = mean Prob > chi2
Log likelihood = -9782.2197 Pseudo R2
docvis Coef. Std. Err. z P>|z|
age .081139 .0221068 3.67 0.000
income .0047535 .0007987 5.95 0.000
female .5957393 .0444707 13.40 0.000
married -.025713 .0463001 -0.56 0.579
physlim .6045645 .057303 10.55 0.000
private .868657 .0595024 14.60 0.000
chronic 1.022388 .0460539 22.20 0.000
_cons -.8222869 .1047564 -7.85 0.000
/1lnalpha .502034 .0292317
alpha 1.652078 .048293
LR test of alpha=0: chibar2(01l) = 1.7e+04 Prob
Type equation here.
Table 4.5 zero inflated poisson
zip docvis $xlist,inf ($xlist)nolog
Zero—-inflated Poisson regression Number of obs
Nonzerc ocbs
Zero obs
Inflation model = logit LR chi2 (7)
Log likelihood = -15723.76 Prob > chiZ2
docvis Coef. Std. Err. z P>|z|
docvis
age .0102207 .0077588 1.32 0.188
income .0023525 .0002531 85.30 0.000
female .2869789 .0164046 17.49 0.000
married -.0825733 .0162368 -5.09 0.000
physlim .3834317 .0173024 22.16 0.000
private .3779918 -.0287769 13.14 0.000
chronic .6155628 .016581 37.12 0.000
_cons . 7978058 .0438202 18.21 0.000
inflate
age -.0814879 .0383143 -2.39 0.017
income -.008962 .0014949 -5.99 0.000
female -.9323071 .0764993 -12.1% 0.000
married ~-.2998978 .0781021 ~-3.84 0.000
physlim -.5520193 .1153383 -4.79 0.000
private -1.169697 .0931796 -12.55 0.000
chronic ~1.656834 .0962338 -17.22 0.000
_cons 2.056909 .170075 12.09 0.000

chibar2

]

4,412
1213.39
0.0000
0.0584

= 0.000

4,412
2,806
1,606

3208.89
0.0000
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4.6 Zero Inflated Negative Binomial

The top half of the table contains coefficient for the factor change in the expected count for those
in the not zero group. The bottom half, contains logit coefficients for the factor change in the odds
of being in the always zero group /Inalpha is the natural log of alpha the dispersion parameter,
alpha is the dispersion parameter of the count model.

4.7 Comparison Of The Models

The first table in the output summarizes the parameter estimates from each of the tested models,
for each models we see the exponentiated coefficients and their t-statistics in the first block of the
table. Then for each NBM we see the estimated dispersion parameters. Next for the zero-inflated
models we see the estimates from the logistic model predicting the certain zeros. In the last block
of the table, a set of fit-statistics is provided for each of the models. This includes the log-
likelihood, BIC and AIC. Next we see a table with one line per model showing the maximum and
mean differences in the observed versus predicted count. Next we have one table each of the
models containing count by count information. In the last table, the tested models are compared to
each other head to head using the tests appropriate to each comparison.

Fig. 4.1

The graph plots the residual from the tested models, the graph is used to eliminate a model that
does not fit well.

Table 4.6 zero inflated negative binomial

zinb docvis $xlist,inf($xlist)nolog
sero—inflated negative binomial regression Number of obs - 4,412
Nonzero obs = 2,806
Zero obs = 1,606
Inflation model = Jlogit LR chi2 (7) - 629 .01
Log likelihood = —9678.842 Prob > chiZ2 - 0.0000
docvis Coef. Std. Exx. = P>z (95% Cconf. Interval]
docvis

age .0410393 .0227682 i.80 0.071 —.0035856 -0856642
income .oo31686 .oo07801 a.06 o.o0o00 .0016397 .0046975
3 .3992868 .0a72314 8_4as o.oo00 .3067149 .4918587
—.0755182 -04a4a86933 -1 .55 , o 0D, B D X -. 1709853 .0199189
.495781 .0s54374 8.94 0.000 .3871257 .6044363
.507167 .0752578 6.74 O0.00O0 .3596645 .6546694
.8193822 .0a75597 17.23 o.oo0o0 . 7261669 .9125975
-1009222 .l24a5542 o.81 O.4a18 —.1431996 .345044

inflate
age - adS37908 .096904 ~-1.59 O.-.1213 -.3437188 -.0361378
income —.0177433 .0058397 —3.04a o.oo02 —.oz291889 —.0062977
female —-1.58483 .22384 —-7.08 o.o000 —-2.023548 —1.146111
married —.551142 .1857786 —-2.97 0.003 —.9152613 —.1870227
physlim ~.9756753 .3929877 —-2_a8 0.013 —-1.745917 —.2054335
private -1 .650272 . 2097979 ~T .87 O .00O0 —2.061468 —1.239076
chronic —-3.173707 . 78595099 —-4a.04a 0.000 —4.714062 —-1.633352
cons 2.083506 .3923714a 5.31 o.000 1.314472 2.85254
/lnalpha < 2T77ALLS -.O0362869 7 .65 O0.000 .2065905 .3488324
alpha 1.320105 -0479025 1.229479 1.417412

able 4.7 comparison of the model
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Variable PRM HERM Zip ZINB
docvis
Age in years / 10 1.032 1.085 1.010 1.042
4.086 3.67 1.32 1.80
Income in $ / 1000 1.004 1.0a5 1.002 . 1.003
16.60 5.95 9.30 4.06
= 1 if female
1 1.635 1.814 1.332 1.491
30.50 13.40 17.49 8.45
= 1 if married
1 0.982 0.975 0.921 0.927
-1.13 —-0.56 -5.09 -1.55
= 1 if physical limitation
1 1.590 1.830 1.467 1.642
26.66 10.55 22.16 8.94
= 1 if private insurance
1 2.170 2.384 1.459 1.661
27.81 14.60 13.14 6.74
= 1 if a chronic condition
1 2.664 2.780 1.851 2.269
59.41 22.20 37.12 17.23
Constant 0.668 0.439 2.221 1.106
-9.79 ~7.85 1i8.21 0.81
lnalpha
Constant 1.652 1.320
17.17 7.65
inflate
Age in years / 10 0.913 0.857
-2.39 -1.59
Income in 5 / 1000 0.991 0.982
-5.99 —-3.04
= 1 if female
1 0.394 0.205
-12.19% —-7.08
= 1 if married
0.741 0.576
—-3.84 -2.97
= 1 if physical limitation
1 0.576 0.377
—-4.79 —2.48
1 if private insurance
1 0.310 0.192
—-12 .55 -7.87
= 1 if a chronic condition
1 0.191 0.042
-17.22 -4.04
Constant 7.822 8.033
12.09 5.31
Statistics
alpha 1.652
N 4412 4412 4412 4412
11 —-1.8let+04 —9782.220 ~1.57e+04 ~9678.842
bic 36305.795 19639.968 21581 .800 19500.350
aic 36254 .658 19582.439 31479.526 19391. 685
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Comparison of Mean Observed and Predicted Count

Maximum At Mean
Model Difference Value |IDiff|
PRM 0.250 0o 0.051
NBRM 0.008 5 0.003
ZIP 0.128 . I 0.035
ZINB 0.028 1 0.008

PRM: Predicted and actual probabilities

Count Actual Predicted IDiff| Pearson
0 0.364 0.114 0.250 2426.826
1 0.159 0.173 0.014 4.989
2 0.104 0.166 0.062 102.237
3 0.068 0.132 0.064 138.096
41 0.054 0.097 0.043 84.451
5 0.046 0.070 0.024 35.967
6 0.029 0.052 0.024 47.901
7 0.029 0.041 0.012 14.440
8 0.021 0.033 0.012 18.881
9 0.017 0.027 0.010 16.002
Sum 0.891 0.906 0.515 2889.791

NBRM: Predicted and actual probabilities

ZINB: Predicted and actual probabilities

Count Actual Predicted IDiff| Pearson
[} 0.3€64 0.387 0.023 5.797
1 0.159 0.130 0.028 27.141
2 0.104 0.093 0.011 6.221
3 0.068 0.069 0.001 0.129
4 0.054 0.054 0.000 ©.009
5 0.046 0.042 0.004 1.637
6 0.029 0.034 0.005 3.670
7 0.029 0.027 0.002 0.8630
8 0.021 0.023 0.001 0.305
9 g.017 0.019 0.001 0.506
Sum 0.891 0.877 0.078 46.045

Tests and Fit Statistics

PRM BIC= 36305.795 AIC= 36254.658 Prefer Over Evidence
vs NBRM BIC= 19639.968 dif= 16665.827 NBRM PRM Very strong
AIC= 19582.439 dif= 16672.219 NBRM PRM
LRX2=16674.21% prob= 0.000 NBRM PRM p=0.000
vs ZIP BIC= 31581.800 dif= 4723.995 ZIP PRM Very strong
AIC= 31479.526 dif= 4775.132 ZIP PRM
Vuong= . prob= - ZIP PRM P=.
vs ZINB BIC= 19500.350 dif= 16805.445 ZINB PRM Very strong
AIC= 19391.685 dif= 16862.574 2ZINB PRM
NBRM BIC= 19639.968 AIC= 19582.439 Prefer Over Ewvidence
vs ZIP BIC= 31581.800 dif=-119%941.832 NBRM ZIp Very strong
AIC= 31479.526 dif=-11897.087 NBRM ZIip
vs ZINB BIC= 19500.350 dif= 139.618 ZINB NERM Verxry strong
AIC= 19391.68B5 dif= 190.755 ZINB NBRM
Vauong= - prob= - ZINB NBRM p=.
ZIP BIC= 31581.800 AIC= 31479.526 Prefer Over Evidence
vs ZINB BIC= 19500.350 dif= 12081.450 ZINB ZIP Very strong
AIC= 19391.685 dif= 12087.842 ZINB ZIp
LRX2=12089.842 prob= 0.000 ZINB zZIP p=0.000
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Fig. 4.1: A Graph that connect Observed-Predicted with Number of Doctor visits

Note: positive deviations show underpredictions.
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DISCUSSION OF RESULTS

In line with our stated aim and objectives, this research work has been able to achieve the
following;

i) It used data obtained from http://www.stata-press.com to model docvis among age,
income, female, black, Hispanic, married, physlim, private, chronic.

i) It has analyzed the data as fitted by poisson regression model(PRM), negative binomial
regression model(NBRM), zero-inflated poisson(ZIP), zero-inflated negative binomial.

iii) Finally it has compared between the four model to discover which model fits perfectly.

The interpretation of table 4.1 gives a clear description of the data. Table 4.2 is the overall summary
of the count data, the mean number of docvis is approximately 3.957 and the variance is (3.957)2
= 15.06, which is substantially more than the mean this leads to our first regression. Table 4.3
Coef. - the poisson coefficient can be interpreted as follows; for a one unit change in the predictor
variable, the difference in logs of the expected counts is expected to change by the respective
regression coefficient, given the other predictor variables in the model are held constant. Age- this
is the poisson regression estimate for a one unit increase in age, given the other variables are held
constant in the model. If a patient were to increase docvis by one unit point, the difference in the
logs of expected counts would be expected to increase by 0.032 unit, while holding the other
variables constant. Income - this is the poisson regression estimate for one unit increase in income,
given the other variables are held constant in the model. If a patient were to increase docvis by one
unit point, the difference in the logs of expected counts would be expected to increase by 0.004
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unit, while holding the other variables constant. Female - this is the poisson regression estimate
for a one unit increase in number of female, given the other variables are held constant in the
model. If a female patient were to increase docvis by one unit point, the difference in the logs of
expected counts would be expected to increase by 0.49 unit, while holding the other variables
constant. Married - this is the poisson regression estimate for a one unit increase in number of
married patient, given the other variables are held constant in the model. If a married patient were
to increase docvis by one unit point, the difference in the logs of expected counts would be
expected to decrease by 0.02 unit, while holding the other variables constant. Physlim this is the
poisson regression estimate for one unit increase in number of physlim patient, given the other
variables are held constant in the model. If a physlim patient were to increase docvis by one unit
point, the difference in the logs of expected counts would be expected to increase by 0.46 unit,
while holding the other variables constant. From our output we see that private patient and chronic
patients also increase their unit number of docvis by 0.77 and 0.98 respectively. _const. — this is
poisson regression estimate when all variables are estimated at point zero. For age, income, female,
married, physlim, private and chronic estimated at point zero. The log of the expected count of
docvis is -0.40 unit. The standard error- these are the standard error of each of the poisson
regression coefficient used to estimated the z test statistics.

The z-test statistics testing the slope for age on docvis is zero given the other variables are in the
model, is (0.031/0.008) -4.06 with an associated P-value of < 0.0001 with alpha been set as 0.05,
we would reject the null hypothesis and conclude that poisson regression coefficient for age is
statistically different from zero. We see that income, female, physlim, private and chronic has an
associated P-values <0.0001 with alpha been set as 0.05 we would reject the null hypothesis and
conclude the their poisson regression coefficients is statistically different from zero. Except
married which has an associated P-value of 0.260 with alpha set at 0.05, we would fail to reject
the null hypothesis and conclude that the poisson regression coefficient for married is not
statistically not different from zero. The estat gof which compares the observed distribution
predicted by poisson distribution. The highly significant test statistics indicates that this is not a
very good choice. Which leads to us running another analysis but this time we using negative
binomial regression, as displayed in the next table. Table 4.4, the Coef.,Std. Err., z and P >|z| has
same interpretation with the poisson regression estimate /Inalpha is the estimate of the log of
dispersion  parameter, alpha the estimate of the dispersion parameter.a =
exp(lnalpha) 1.652078. the dispersion parameter of alpha is greater than zero that is the data are
over dispersed. The likelihood ratio test of alpha=0 at the bottom is the test of overdispersion
parameter alpha. When the overdispersion parameter is equal to zero the test statistics is -2[-
18119.329-(-9782.2197) = 16674.22 with an associated p-value 0f <0.0001. the large test statistic
would suggest that the response variable is overdispersed and is not sufficiently described by the
simpler poisson distribution. Table 4.5 From our result in the non-zero group we see that the z-
test for predictors income, female, married, physlim, private, chronic and the intercept _cons are
all statistically significant we would reject the null hypothesis and conclude that the regression
coefficients has been found to be statistically different from zero, except the predictor age. For the
zero group the z-test for the predictors age, income, female, married, physlim, private, chronic and
the intercept _cons are all statistically significant so we would reject the null hypothesis and
conclude that the regression coefficients has been found to be statistically different from zero.
Table 4.6 from our result In the non-zero group the predicted number of docvis among income,
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female, physlim, private, chronic are significant except married. The bottom half, contains logit
coefficients for the factor change in the odds of being in the always zero group. The predicted
number of docvis among the variables is statistically significant except age. alpha the dispersion
parameter is greater than zero, this suggests that our data is overdispersed. Table 4.7 from the last
block of the model parameter and fit we see that the two model aic and bic are extremely close.the
parameter estimates are nearly identical. from the residuals by count table we see that the NBRM
and ZINB did better at this predicted and overall the two models had a lower mean absolute
differences between the predicted and observed values. At this point the NBM and ZINB is looking
more appropriate than the PRM and ZIP. Next we have one table for each of the models containing
counts by count information. In these four tables, shows the output for counts 0-9, the actual
proportion from each models, the absolute differences is included, as in the given counts
distribution to a pearson chi-sqaure statistics comparing that actual distribution of the data and the
distribution proposed by the model for a given row. The pearson statistics which is calculate as
N(|diff|)?/ /predicted, where N is the number of observations in the dataset. Looking closely
at the sum of the pearson columns gives us a sense of how close the predicted proportions were to
the actual proportions using this method to compare, the NBRM and ZINB appears better than the
PRM and ZIP. Finally in the next the result suggests which model is most preferred by the given
comparison strength of the evidences supporting this preference. When we compare the four
models using BIC and AIC the NBRM and ZINB is preferred over PRM and ZIP. Fig 4.1 is a
graph that plots the residuals from the tested models, the models with lines closest to zero should
be considered for our data, at the zero and one count NBRM and ZINB appears better than the
PRM and ZIP models.

6.1 CONCLUSION

Categorically, this work can be summarized without any fear of contradiction the poisson
regression model (PRM), negative binomial regression model(NBRM) which is the base for the
other regression model zero-inflated poisson (ZIP) and zero-inflated(ZINB) respectively fits this
work except the fact that some models fits better than the others. The PRM doesn’t fit reasonably
well because if its strict conditions of equal conditional mean and equal conditional variances E(x)
= Var(x). as a result leading to under predictions of zeros. While NBRM because of its flexibility
fits reasonable well because it allows the variances to be greater than the mean called over-
dispersion. The zero-inflated model assumes two groups, one has no chance of going beyond zeros.
The other group may have zero count but the probability of having a positive count is non-zero. In
conclusion the ZINB and NBRM fits better than the other two models.

6.2 RECOMMENDATION
Recommendations are hereby presented;

1) NBRM often maybe good enough for the modeling of count data so the need of zero
inflated models might be questioned.

2) Because of PRM strict conditions it makes its result to be inconsistent and biased.

3) This work can furthered for verification purposes or contribution by any researcher who
picks interest in it.
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6.3 CONTRIBUTION TO KNOWLEDGE

The use of Poisson Regression Model with application to count data ease the analysis, but because
poisson regression model cannot handle overdispersion, its results are inconsistent and baised. It
is seen that negative binomial model because of its flexibility its results are more consistent which
maybe suitable for modeling count data. In the case of several zeros, zero inflated negative
binomial model is preferred to pure negative binomial model.
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